The locus of point of intersection of two perpendicular tangent of the ellipse $\frac{{{x^2}}}{{{9}}} + \frac{{{y^2}}}{{{4}}} = 1$ is :-
$x^2 + y^2 = 4$
$x^2 + y^2 = 9$
$x^2 + y^2 = 13$
$x^2 + y^2 = 5$
The position of the point $(1, 3)$ with respect to the ellipse $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$
The number of $p$ oints which can be expressed in the form $(p_1/q_ 1 , p_2/q_2)$, ($p_i$ and $q_i$ $(i = 1,2)$ are co-primes) and lie on the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ is
The line $x\cos \alpha + y\sin \alpha = p$ will be a tangent to the conic $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, if
The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$, is .............. $\mathrm{sq. \,units}$
The eccentricity of the ellipse $\frac{{{{(x - 1)}^2}}}{9} + \frac{{{{(y + 1)}^2}}}{{25}} = 1$ is