- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
The locus of point of intersection of two perpendicular tangent of the ellipse $\frac{{{x^2}}}{{{9}}} + \frac{{{y^2}}}{{{4}}} = 1$ is :-
A
$x^2 + y^2 = 4$
B
$x^2 + y^2 = 9$
C
$x^2 + y^2 = 13$
D
$x^2 + y^2 = 5$
Solution
Locus of point of intersection of two perpendicular tangent's of the ellipse is director circle and equation is
$\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}+\mathrm{b}^{2}$
So, $x^{2}+y^{2}=9+4 \Rightarrow x^{2}+y^{2}=13$
Standard 11
Mathematics