The locus of point of intersection of two perpendicular tangent of the ellipse  $\frac{{{x^2}}}{{{9}}} + \frac{{{y^2}}}{{{4}}} = 1$ is :-

  • A

    $x^2 + y^2 = 4$

  • B

    $x^2 + y^2 = 9$

  • C

    $x^2 + y^2 = 13$

  • D

    $x^2 + y^2 = 5$

Similar Questions

If the line $x\cos \alpha + y\sin \alpha = p$ be normal to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, then

If $ \tan\  \theta _1. tan \theta _2 $ $= -\frac{{{a^2}}}{{{b^2}}}$  then the chord joining two points $\theta _1 \& \theta _2$  on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $= 1$  will subtend a right angle at :

The foci of the ellipse $25{(x + 1)^2} + 9{(y + 2)^2} = 225$ are at

Let $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(b < a)$, be a ellipse with major axis $A B$ and minor axis $C D$. Let $F_1$ and $F_2$ be its two foci, with $A, F_1, F_2, B$ in that order on the segment $A B$. Suppose $\angle F_1 C B=90^{\circ}$. The eccentricity of the ellipse is

  • [KVPY 2020]

Let $E_{1}: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \mathrm{a}\,>\,\mathrm{b} .$ Let $\mathrm{E}_{2}$ be another ellipse such that it touches the end points of major axis of $E_{1}$ and the foci $E_{2}$ are the end points of minor axis of $E_{1}$. If $E_{1}$ and $E_{2}$ have same eccentricities, then its value is :

  • [JEE MAIN 2021]