The locus of point of intersection of two perpendicular tangent of the ellipse  $\frac{{{x^2}}}{{{9}}} + \frac{{{y^2}}}{{{4}}} = 1$ is :-

  • A

    $x^2 + y^2 = 4$

  • B

    $x^2 + y^2 = 9$

  • C

    $x^2 + y^2 = 13$

  • D

    $x^2 + y^2 = 5$

Similar Questions

Two sets $A$ and $B$ are as under:

$A = \{ \left( {a,b} \right) \in R \times R:\left| {a - 5} \right| < 1 \,\,and\,\,\left| {b - 5} \right| < 1\} $; $B = \left\{ {\left( {a,b} \right) \in R \times R:4{{\left( {a - 6} \right)}^2} + 9{{\left( {b - 5} \right)}^2} \le 36} \right\}$ then : . . . . .

  • [JEE MAIN 2018]

Find the equation for the ellipse that satisfies the given conditions: $b=3,\,\, c=4,$ centre at the origin; foci on the $x$ axis.

Find the coordinates of the foci, the rertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $16 x^{2}+y^{2}=16$

The line $y = mx + c$ is a normal to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{a^2}}} = 1$, if $c = $

An ellipse has eccentricity $\frac{1}{2}$ and one focus at the point $P\left( {\frac{1}{2},\;1} \right)$. Its one directrix is the common tangent nearer to the point $P$, to the circle ${x^2} + {y^2} = 1$ and the hyperbola ${x^2} - {y^2} = 1$. The equation of the ellipse in the standard form, is

  • [IIT 1996]